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Abstract. We present a simple analytic approximation for evaluating the ensemble-averaged orientation
or alignment of a beam of molecules subjected to a strong static or radiative field. This approximation is
based on the eigenproperties which polar or polarizable molecules exhibit in the strong-field, harmonic-
librator limit, and on the Boltzmann statistics of the free rotor states which adiabatically correlate with the
harmonic librator states. For either the permanent or induced dipole case, the resultant formula involves
just two dimensionless parameters which characterize the strength of the molecule-field interaction and
the rotational temperature. The net polarization of a molecular beam thus obtained is shown to be in an
excellent agreement with the exact values computed numerically from first principles. The validity range of
the approximation includes the large-interaction, high temperature regions of the parameter space where
first-principle calculations are onerous.

PACS. 32.60.+i Zeeman and Stark effects – 39.10.+j Atomic and molecular beam sources and techniques

1 Introduction

When subject to an external field, an ensemble of
molecules becomes polarized. The degree to which this
polarization takes place depends on the interaction of the
individual molecules with the field, as well as on the distri-
bution of the molecules over the molecular states available.

The problem of the polarization of an equilib-
rium ensemble of magnetic or electric dipoles interact-
ing with a static electric or magnetic field was first
treated by Langevin [1] and Debye [2], and subse-
quently by Van Vleck [3]. Their work, which covered the
high-temperature, low-field limit case, was extended by
Friedrich and Herschbach [4] to encompass essentially all
field strengths and temperatures. In addition, Friedrich
and Herschbach tackled the case of the induced-dipole in-
teraction, ignored in previous treatments. In all this work,
the populations of the molecular states in the field were
derived from Boltzmann factors based on eigenenergies
which the molecules attain in the field. Thus the approx-
imations reaped from these treatments pertain to ensem-
bles of molecules that reach equilibrium within the field.

In this paper we deal likewise with the polarization of
an ensemble of polar or polarizable molecules interacting
with an electrostatic or radiative field; however, here we
consider the instance when the populations of the molec-
ular states in the field are given by the populations of the
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field-free rotor states. This situation corresponds to the
case of beam molecules which enter adiabatically into an
electric or radiative field from a field-free region. Needless
to say, such a situation is encountered in many current
experiments.

The analytic approximation for the net polarization
that we here develop is based on the eigenproperties of
molecules in the strong-field, harmonic-librator limit, and
on the Boltzmann statistics of the free rotor states which
adiabatically correlate with the harmonic librator states.

The approximation gives rise to simple, yet accurate
formulae for the net orientation and alignment of a molec-
ular beam. Their applicability range is assessed by a com-
parison with exact numerical calculations.

2 Eigenproperties of molecules in strong
nonresonant electric fields

2.1 Permanent dipole interaction

In an electrostatic field ε, a polar 1Σ molecule with
a body-fixed electric dipole moment µ is subject to a
permanent-dipole potential

Vµ(ω; θ) = −Bω cos θ (1)

with ω = µε/B a dimensionless parameter which measures
the dipole’s maximum potential energy in terms of the
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Fig. 1. Correlation diagram between the free-rotor states J̃
(levels at the center) and the harmonic librator limits for
the permanent-dipole interaction (levels on the left) and the
induced-dipole interaction (levels on the right). The equidis-
tant levels in the harmonic librator limit for either the
permanent- or induced-dipole case are labeled by the libra-
tor quantum number N and the projection |M | of the angu-
lar on the field vector. For the permanent dipole interaction,
N = 2J̃ − |M |; for the induced dipole interaction, N = J̃ for
J̃ − |M | even and N = J̃ − 1 for J̃ − |M | odd.

rotational constant B of the molecule,1 and θ is the polar
angle between the molecular axis and the direction of the
field [5–7]. Since, in the basis of the field-free states |J, M〉,
the cos θ operator couples states with same M but with J ’s
that differ by ±1, the eigenstates are hybrids of field-free
rotor states for a fixed value of M and a range of J ’s. Be-
cause |J, M〉 states of both even and odd parity contribute
to such a linear superposition, the hybrid states have in-
definite parity, and thus can be oriented in the space-fixed
frame. The eigenproperties of the states created by the
pendular potential (1) can be found by standard numeri-
cal methods. In the high-field limit, ω → ∞, these states
coincide with those of a two-dimensional angular harmonic
oscillator (harmonic librator) whose equidistant eigenen-
ergies are

EJ̃,M = B[−ω + (2J̃ − |M | + 1)(2ω)1/2]. (2)

The eigenstates, at any ω, are labeled by |M | and the
nominal value J̃ of the angular momentum of the field-
free rotor state (ω → 0) that adiabatically correlates with
the hybrid function, see Figure 1. Thus each state is char-
acterized solely by its J̃ and |M | and the value of ω. In
the harmonic librator limit, the uncertainly principle for
pendular oscillations can be cast in the form 〈J2〉〈θ2〉 ≥
(2J̃−|M |+1)2. This implies that, for a given state |J̃ , |M |〉,

1 Note that ω = 0.0168µ [Debye] ε [kV/cm]/B [cm−1].

achieving a narrow angular confinement requires a wide
range of J ’s in the hybrid wavefuntion. The orientation of
the molecular axis in a given state |J̃ , |M |〉 is character-
ized by the expectation value 〈cos θ〉J̃ ,|M|, the orientation
cosine. Note that θ0

J̃,|M| = arccos〈cos θ〉J̃ ,|M| is the an-
gular amplitude of the molecular axis; hence the greater
the orientation cosine the smaller the angular amplitude.
From the Hellmann-Feynman theorem, the orientation co-
sine is given by 〈cos θ〉J̃ ,|M| = −∂(EJ̃,M/B)/∂ω [6]. Thus,
from equation (2), the orientation cosine in the harmonic
librator limit is simply

〈cos θ〉J̃ ,|M| = 1 − 2J̃ − |M | + 1
(2ω)1/2

(3)

cf. equation (2).

2.2 Induced dipole interaction

In an external electric field, the electronic distribution of
any molecule (or atom) becomes distorted to some extent.
This distortion, governed by the molecular polarizability,
results in an induced dipole moment. For experimentally
feasible static fields, such induced moments are very weak,
typically only on the order of 10−2 D (Debye). However,
far stronger induced moments, well above 1 D, can now be
produced by intense laser fields, using either pulsed lasers
or supermirror techniques to build up a cw cavity mode.
This approach is applicable regardless of whether or not
the molecule is polar (or paramagnetic).

In a nonresonant laser field, a 1Σ molecule is subject
to an induced-dipole potential

Vα

(
ω‖, ω⊥; θ

)
= −B

(
∆ω cos2 θ + ω⊥

)
(4)

where θ is the angle between the molecular axis and the
ε-field of the laser beam [8,9]. Here ∆ω ≡ ω|| − ω⊥, and
the dimensionless parameters ω||,⊥ ≡ 2πα||,⊥ I/(Bc), pro-
portional to components α|| and α⊥ of the polarizability
parallel and perpendicular to the molecular axis and to
the laser intensity I = (c/4π)ε2, measure the maximum
potential energy of the induced dipole in terms of the ro-
tational constant, B.2 The corresponding eigenproperties
are readily evaluated by standard methods. The isotropic
part of the potential, ω⊥, lowers all states uniformly, and
the anisotropic part, governed by ∆ω, introduces a double-
well corresponding to the end-for-end symmetry of the
induced -dipole interaction. Since the cos2 θ operator cou-
ples states with same M but with J ’s that differ by 0 or
±2, the resulting hybrid states are superpositions of field-
free rotor states of either even or odd parity, and so have
a definite parity. These states can only be aligned but not
oriented.

In the high-field limit, ∆ω → ∞, the range of θ
is confined near a potential minimum and the corre-
sponding Schrödinger equation reduces to that for a

2 Note that ∆ω = 10−11∆α [Å3] I [W/cm2]/B [cm−1];
I [W/cm2] = 2.654 × 103ε2 [kV2/cm2].
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two-dimensional angular harmonic oscillator (harmonic li-
brator) with eigenenergies

EJ̃ ,M = B[−∆ω − ω⊥ + 2∆ω1/2(J̃ + 1)

+
|M |2

2
− J̃2

2
− J̃ − 1] for J̃ − |M | even,

= B[−∆ω − ω⊥ + 2∆ω1/2J̃

+
|M |2

2
− J̃2

2
− 1

2
] for J̃ − |M | odd. (5)

The states are, again, labeled by the good quantum num-
ber |M | and the nominal value J̃ of the angular momen-
tum of the field-free rotor state (ω → 0) that adiabatically
correlates with the hybrid function, see Figure 1. The un-
certainty principle for the harmonic pendular oscillations
can be cast in a form similar to that for the permanent-
dipole case.

The spatial anisotropy of the molecular axis dis-
tribution is characterized by the expectation value
〈cos2 θ〉J̃ ,M = −∂(EJ̃,M/B)/∂∆ω, the alignment cosine.
The angular amplitude of the molecular axis is then
θ0 = arccos[〈cos2 θ〉]1/2. In the harmonic librator limit,
we obtain from equation (5) the alignment cosine

〈cos2 θ〉J̃ ,M = 1 − J̃ + 1
∆ω1/2

for J̃ − |M | even,

= 1 − J̃

∆ω1/2
for J̃ − |M | odd. (6)

The nonresonant radiation can also be delivered as a pulse
of intensity I(t) = 〈ε2(t)〉c/(4π) = I0g(t/τ) where I0 de-
notes the peak intensity and g(t/τ) the pulse time profile,
with τ the pulse duration. Here we have assumed that the
oscillation frequency is far removed from any molecular
resonance and much higher than the rotational periods.
As a result, ∆ω = ∆ω(t) and so Vα = Vα(t) becomes a
function of time. The analysis [10] of the time dependence
shows that in the short-pulse limit (τ � π�/B), the in-
teraction is non-adiabatic and the pendular states recur
after the pulse had passed, making it possible and feasible
to obtain molecular alignment under field-free conditions.
In the long-pulse limit (τ � π�/B), the interaction is adi-
abatic and pendular states faithfully follow the field as if
it were static at any instant. It is this latter case that we’ll
limit our considerations to.

3 Net polarization of a molecular beam

When a molecular beam enters into the range of an elec-
trostatic field, the populations of the field-free rotational
states are adiabatically transferred to the hybrid states
created by the field. A similar adiabatic population trans-
fer takes place when the beam molecules are irradiated by
a laser pulse whose duration τ exceeds π�/B. In either
case, each initial rotational state J is being redistributed
(J → J̃) into (2J̃ + 1) states within the field with a sta-
tistical weight given by the Boltzmann factor

wJ̃ = exp
[
−J̃(J̃ + 1)/Υ

]
Q−1 (7)

which depends on the reduced rotational temperature

Υ ≡ kT

B
(8)

and the rotational partition function,

Q ≡
∞∑

J̃=0

(
2J̃ + 1

)
exp

[
−J̃(J̃ + 1)/Υ

]
= Q(Υ ). (9)

Here T is the rotational temperature of the beam
molecules and B is their rotational constant.

We note that the distinguishing feature of our treat-
ment here is that the molecules maintain their free-rotor
Boltzmann factors while in the field. In other words, the
eigenenergies the molecules acquire in the field do not en-
ter their Boltzmann factors. This is exactly the situation
encountered in the case of an adiabatic population transfer
of beam molecules from a field-free to a high-field region
in the absence of a relaxation mechanism (such as colli-
sions): in such a case the molecules will not establish any
new equilibrium populations in the field.

Figure 1 shows a correlation diagram between the free-
rotor states J̃ and the harmonic librator limits for the
permanent dipole interaction and the induced-dipole in-
teraction, see caption. It is according to this scheme that
the populations of the free-rotor states are distributed
among the hybrid |J̃ , |M |〉 states. Note the characteris-
tic differences in the level structure of the permanent and
induced dipole cases, such as the opposite ordering of the
|M | states for a given J̃ and the (2ω)1/2 and 2∆ω1/2 spac-
ings of the respective harmonic librator levels.

3.1 Net orientation of permanent dipoles

The net orientation (i.e., the ensemble average of the ori-
entation cosine) is given by

〈〈cos θ〉〉 =
∞∑

J̃=0

wJ̃

M=+J̃∑

M=−J̃

〈cos θ〉J̃ ,M . (10)

We’ll now make use of the analytic expression for the
orientation cosine in the harmonic librator limit, equa-
tion (3), and substitute it into equation (10). As a result,
the sum over M in equation (10) becomes explicit and,
moreover, can be carried out in closed form:

M=+J̃∑

M=−J̃

〈cos θ〉J̃ ,M = 2J̃ + 1 − (2J̃ + 1)(2J̃ + 1) − J̃(J̃ + 1)
(2ω)1/2

= 2J̃ + 1 − 3J̃2 + 3J̃ + 1
(2ω)1/2

. (11)

In order to complete our closed-form evaluation of the net
orientation cosine, we’ll replace the summation over J̃ by
integration over a continuous variable x, J̃ → x. As a
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result,

〈〈cos θ〉〉 = Q−1
∞∑

J̃=0

exp
[
−J̃(J̃ + 1)/Υ

]

×
[

2J̃ + 1 − 3J̃2 + 3J̃ + 1
(2ω)1/2

]

→ Q−1

∫ ∞

0

exp [−x(x + 1)/Υ ]

×
[
2x + 1 − 3x2 + 3x + 1

(2ω)1/2

]
dx

= 1 − 1
(2ω)1/2

{
3
4

+
1
8

( π

Υ

)1/2

(1 + 6Υ )

×exp
[

1
4Υ

] [
1 − erf

(
1

2Υ 1/2

)]}
(12)

where we made use of

Q(Υ ) =
∞∑

J̃=0

(2J̃ + 1) exp[−J̃(J̃ + 1)/Υ ]

→
∫ ∞

0

(2x + 1) exp [−x(x + 1)/Υ ] dx = Υ (13)

i.e., that at high reduced rotational temperatures the
rotational partition function coincides with the reduced
rotational temperature.

3.2 Net alignment of induced dipoles

The net alignment (i.e., the ensemble average of the align-
ment cosine) is given by

〈〈cos2 θ〉〉 =
∞∑

J̃=0

wJ̃

M=+J̃∑

M=−J̃

〈cos2 θ〉J̃ ,M . (14)

Substituting for the alignment cosine from equation (6)
allows the sum over M to be, again, evaluated in closed
form:

M=+J̃∑

M=−J̃

〈cos2 θ〉J̃ ,M = J̃ − J̃ J̃

∆ω1/2
+ J̃ + 1 − (J̃ + 1)(J̃ + 1)

∆ω1/2

= 2J̃ + 1 − 2J̃2 + 2J̃ + 1
∆ω1/2

(15)

where the first two terms on the right-hand side of the
first line correspond to states with J̃ − |M | odd and the
last three terms to J̃−|M | even. Now, again, we’ll replace
the summation over J̃ by integration over a continuous

Fig. 2. Dependence of the net orientation 〈〈cos θ〉〉 (i.e.,
ensemble-averaged expectation value of the cosine of the polar
angle θ between the molecular axis and electric-field vector)
as a function of the permanent-dipole interaction parameter ω
(proportional to the strength of the electric field) at different
values of the reduced rotational temperature Υ . The exact nu-
merical calculations are shown by black curves and the model,
formula (12), by the grey curves. Once overlap is reached, only
the model results are shown.

variable x, J̃ → x, and obtain as a result,

〈〈cos2 θ〉〉 =
∞∑

J̃=0

wJ̃

[

2J̃ + 1 − 2J̃2 + 2J̃ + 1
∆ω1/2

]

→ Q−1

∫ ∞

0

exp [−x(x + 1)/Υ ]

×
[
2x + 1 − 2x2 + 2x + 1

∆ω1/2

]
dx

= 1 − 1
2∆ω1/2

−
( π

16Υ∆ω

)1/2

(1 + 2Υ )

× exp
[

1
4Υ

] [
1 − erf

(
1

2Υ 1/2

)]
. (16)

4 Validity range of the net polarization
formulae

The validity of the analytic expressions (12) and (16)
for the net orientation and alignment of molecules in a
beam can be best assessed by a comparison with the cor-
responding exact numerical calculation. Such a compar-
ison is made in Figure 2 for the net orientation and in
Figure 3 for the net alignment, over a wide range of re-
duced temperatures Υ and interaction parameters ω or
∆ω. The numerical calculations were carried out by diag-
onalizing the corresponding Hamiltonian matrix, extract-
ing the eigenvectors, computing the orientation/alignment
cosines for each individual state, and, finally, carrying out
the summations over the J̃ and M states according to
equations (10) or (14). Such a computation is quite oner-
ous: for instance, at Υ = 100 and ω = 100, about a hun-
dred 100 × 100 matrices need to be diagonalized in order
to obtain a result that converges within 1%.
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Fig. 3. Dependence of the net alignment 〈〈cos2 θ〉〉 (i.e.,
ensemble-averaged expectation value of the square of the cosine
of the polar angle θ between the molecular axis and electric-
field vector) as a function of the induced-dipole interaction
parameter ∆ω (proportional to the square of the strength of
the electric field or linearly proportional to laser intensity) at
different values of the reduced rotational temperature Υ . The
exact numerical calculations are shown by black curves and
the model, formula (16), by the grey curves. Once overlap is
reached, only the model results are shown.

From Figures 2 and 3 we see that the agreement of our
approximation (shown by the grey curves) with the exact
calculations (shown by black curves) becomes excellent
at about ω/Υ � 3 for the net orientation and at about
∆ω/Υ � 5 for the net alignment.

One may wonder about the reasons for the wide ap-
plicability of formulae (12) and (16). Obviously, at high-
enough values of ω or ∆ω, all states populated at a given
Υ will become harmonic librator states. This is indeed the
regime where our formulae are exact. What may come as
a surprise is how low a value of ω or ∆ω at a given Υ
is required to reach the harmonic limit. This is well illus-
trated already for the ground state (i.e., Υ = 0): apart
from the singularity at ω, ∆ω → 0, the ground-state har-
monic librator orientation/alignment cosine comes close
to an exact value at ω, ∆ω � 1, indicating that from the
value ω, ∆ω ≈ 1 on, the |J̃ = 0, |M | = 0〉 state is se-
curely bound in the parabolic neighborhood of either of
the pendular potentials (1) or (4). Similarly for higher
states populated at higher Υ . The most probable value of
J̃ at a given Υ is

J̃∗ ≈
(

Υ

2

)1/2

(17)

which reveals that states of up to about 3J̃∗ need to be hy-
bridized in order to attain the harmonic limit. And they
do... Indeed, evaluating the net polarization in the har-
monic librator limit as we did gives us a better sense for
the effect of the pendular potentials and the onset of the
harmonic limit.

The somewhat different validity ranges of formu-
lae (12) an (16) can be accounted for by noticing the
difference in the spacings of the harmonic librator lev-

els for the permanent- and induced-dipole cases, cf. equa-
tions (2) and (5): this is greater for the induced dipole
interaction than for the permanent dipole by a factor of
21/2 at ω = ∆ω, cf. Figure 1. Hence a correspondingly
greater value of ∆ω needs to be applied in order to reach
the harmonic limit for the induced-dipole case (namely,
∆ω/Υ � 5) than for the permanent-dipole interaction
(ω/Υ � 3).

We note that a series expansion for Υ → ∞ of for-
mula (12) works as well as the formula itself at Υ � 10.
The expansion (up to 1st order in Υ ) takes the form

〈〈cos θ〉〉 → 1 − 1
(8ωΥ )1/2

[
4

Υ 1/2
+ π1/2(12Υ − 5)

]

at Υ large. (18)

Even better, for the net alignment, a series expansion for
Υ → ∞ of formula (16) works as well as the formula itself
at all Υ . The expansion (up to 1st order in Υ ) takes the
form

〈〈cos2 θ〉〉 → 1 − 1
2∆ω1/2

×
[
1 +

(( π

16Υ

)1/2

(3 + 4Υ ) − 2
3Υ

− 1
)]

. (19)

Therefore, formulae (19) and (16) can be used interchange-
ably.

In deriving formulae (12) and (16), we made use of the
Euler-Maclaurin formula to replace sums by integrals [11].
Interestingly, the remainder in the Euler-Maclaurin for-
mula is smaller for the net-polarization formulae than it
is, e.g., for the rotational partition function, equation (13).
In fact, |∑− ∫ |/(

∑
+

∫
) � 0.15 within the validity range

of formulae (12) and (16). Moreover, the deviation of the
integral from the sum is such that the resultant approxi-
mation (grey curves in Figs. 2 and 3) comes closer to the
exact result (black curves) than it would have if it were
based on the numerically evaluated sums.

In our previous work [12] we provided nomograms that
summarize the attainable values of the interaction param-
eters ω and ∆ω as a function of field strength or laser
intensity for a variety of molecules. Since field strengths
ε ≈ 100 kV/cm can be attained in electrostatic fields,
ω values on the order of 10, sometimes even 1000, can
be obtained. For instance, for the trimer (HCN)3, whose
rotational constant is small and dipole moment large, a
value of ω ≈ 600 has been achieved [13,14]. Available cw
lasers combined with build-up cavities give promise of de-
livering up to 1011 W/cm2 at a narrow beam waist. This
corresponds to a field strength of about 107 V/cm, suffi-
cient to induce a dipole moment on the order of 1 D in a
typical small molecule such as Cl2. Pulsed lasers can de-
liver far higher intensities, although spectroscopic or trap-
ping experiments will usually not want to exceed about
1012 W/cm2 in order to avoid ionizing the molecules. The
corresponding values of the ∆ω parameter then fall be-
tween 100 and 1000 for typical small molecules.

Table 1 lists, for a selection of rotational tempera-
tures and rotational constants, the values of the reduced
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Table 1. A sampling of rotational temperatures, T , and re-
duced rotational temperatures, Υ ,a that obtain for a selection
of rotational constants, B, along with the most probable rota-
tional state J̃∗, and the minimum values ω� and ∆ω� of the
dimensionless interaction parameters for which formulae (12)
and (16) are valid. See text.

T [K] B [cm−1] Υ J̃∗ ω� ∆ω�

10 1 7 2 21 35

10 0.1 70 6 210 350

10 0.01 700 19 2100 3500

1 1 0.7 0 2 3.5

1 0.1 7 2 21 35

1 0.01 70 6 210 350

0.38 1 0.3 0 1 1

0.38 0.1 2.7 1 8 14

0.38 0.01 27 4 81 140

aThe reduced rotational temperature Υ = 0.69T [K]/B [cm−1].

temperature, along with J̃∗ and the minimum values ω�
and ∆ω� of the interaction parameters ω and ∆ω for which
formulae (12) and (16) still apply.

5 Conclusions

We have developed a simple analytic approximation for
evaluating the net orientation and alignment of molecules
in a beam. The validity of the resultant formulae at
ω/Υ � 3 (net orientation, Eq. (12)) and ∆ω/Υ � 5 (net
alignment, Eq. (16)) was established by a comparison
with an exact numerical calculation. The formulae should
find wide application in assessing the overall polarization
achieved in molecular beams interacting with external
fields as well as in other situations where molecules main-
tain their field-free populations while interacting with

a field. These include molecules embedded in small He
nano-droplets, subjected to an external field, as revealed
by the experiments of Nauta and Miller [15].

I’m grateful to Gerard Meijer (Berlin), Wieland Schöllkopf
(Berlin), and Roger Miller (Chapel Hill) for their helpful com-
ments. I dedicate this paper to the memory of Roger Miller.
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